Pseudo-centrosymmetric matrices, with applications to counting perfect matchings
نویسنده
چکیده
We consider square matrices A that commute with a fixed square matrix K, both with entries in a field F not of characteristic 2. When K2 = I, Tao and Yasuda defined A to be generalized centrosymmetric with respect to K. When K2 = −I, we define A to be pseudo-centrosymmetric with respect to K; we show that the determinant of every even-order pseudo-centrosymmetric matrix is the sum of two squares over F , as long as −1 is not a square in F . When a pseudo-centrosymmetric matrix A contains only integral entries and is pseudo-centrosymmetric with respect to a matrix with rational entries, the determinant of A is the sum of two integral squares. This result, when specialized to when K is the even-order alternating exchange matrix, applies to enumerative combinatorics. Using solely matrix-based methods, we reprove a weak form of Jockusch’s theorem for enumerating perfect matchings of 2-even symmetric graphs. As a corollary, we reprove that the number of domino tilings of regions known as Aztec diamonds and Aztec pillows is a sum of two integral squares.
منابع مشابه
Perfect Matchings in Edge-Transitive Graphs
We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...
متن کاملParity Separation: A Scientifically Proven Method for Permanent Weight Loss
Given an edge-weighted graph G, let PerfMatch(G) denote the weighted sum over all perfect matchings M in G, weighting each matching M by the product of weights of edges in M. If G is unweighted, this plainly counts the perfect matchings of G. In this paper, we introduce parity separation, a new method for reducing PerfMatch to unweighted instances: For graphs G with edge-weights 1 and −1, we co...
متن کاملCounting Matchings with k Unmatched Vertices in Planar Graphs
We consider the problem of counting matchings in planar graphs. While perfect matchings in planar graphs can be counted by a classical polynomial-time algorithm [26, 33, 27], the problem of counting all matchings (possibly containing unmatched vertices, also known as defects) is known to be #P-complete on planar graphs [23]. To interpolate between the hard case of counting matchings and the eas...
متن کاملCounting perfect matchings in graphs that exclude a single-crossing minor
A graph H is single-crossing if it can be drawn in the plane with at most one crossing. For any single-crossing graph H, we give an O(n4) time algorithm for counting perfect matchings in graphs excluding H as a minor. The runtime can be lowered to O(n1.5) when G excludes K5 or K3,3 as a minor. This is the first generalization of an algorithm for counting perfect matchings in K3,3free graphs (Li...
متن کاملApproximately Counting Perfect and General Matchings in Bipartite and General Graphs
Approximately Counting Perfect And General Matchings in Bipartite and General Graphs
متن کامل